Affiliation:
1. Department of Electrical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore
Abstract
Computer simulations were done extensively in order to study nonlinear dynamics of laser and non-equilibrium electron-hole plasma interaction in deep submicron n-MOSFET silicon devices. We constructed the modified Duffing kind of nonlinear electron-hole plasma oscillator equation. Nonlinear characteristics of electron-hole plasma by impact ionization in submicron devices manifest a wide diversity of complex chaotic behavior. Collision frequency is found to be the dominant parameter to influence the bifurcation, chaos, hysteresis and bistable effects of electron-hole plasma at deep submicron devices. Small windows of higher period cascade above the critical value of laser parameter (α1α2) in the chaos region are observed. Non-equilibrium electron-hole plasma shows much chaotic regime at lower value of laser frequency (δ). Hysteresis and bistable region of electron-hole plasma are also presented and the conditions for their occurrence are identified. The unstable region completely merge at higher value of effective collision frequency (γ).
Publisher
World Scientific Pub Co Pte Lt
Subject
Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials