Super and subluminal propagation in nonlinear Schrödinger equation model with self-steepening and self-frequency shift

Author:

Saini A.1,Vyas V. M.2,Raju Thokala Soloman3,Pandey S. N.4,Panigrahi Prasanta K.1

Affiliation:

1. Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, India

2. Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India

3. Indian Institute of Science Education and Research (IISER), Tirupati, Andhra Pradesh, 517507, India

4. Department of Physics, Motilal Nehru National Institute of Technology, Allahabad 211004, India

Abstract

We investigate exact traveling wave solutions of higher order nonlinear Schrödinger equation (NLSE) in the absence of third-order dispersion, which exhibit nontrivial self-phase modulation. It is shown that the corresponding dynamical equation, governing the evolution of intensity in the femtosecond regime, is that of NLSE with a source. The exact localized solutions to this system can have both super and subluminal propagation belonging to two distinct classes. A number of these solitons exhibit chirality, thereby showing preferential propagation behavior determined by group velocity dispersion. Both localized bright and dark solitons are found in complementary velocity and experimental parameter domains, which can exist for anomalous and normal dispersion regimes. It is found that dark solitons in this system propagate with nonzero velocity, unlike their counterpart in nanosecond regime. Interestingly, subluminal propagation is observed for solitons having a nontrivial Padé type intensity profile.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3