Dispersive shock waves in colloids with temperature dependent compressibility

Author:

Azmi A.1,Marchant T. R.2

Affiliation:

1. School of Mathematical Science, Universiti Sains Malaysia, 11800 USM Penang, Malaysia

2. School of Mathematics and Applied Statistics, The University of Wollongong, Wollongong 2522, N.S.W., Australia

Abstract

The formation of a dispersive shock wave in a colloidal medium, due to an initial jump in the light intensity, is studied. The compressibility of the colloidal particles is modeled using a series in the particle density, or packing fraction, where the virial coefficients depend on the particle interaction model. Both the theoretical hard disk and sphere repulsive models, and a model with temperature dependent compressibility, are considered. Experimental results for the second virial coefficient show that it is temperature dependent and that the particle interactions can be either repulsive or attractive. These effects are modeled using a power-law relationship. The governing equation is a focusing nonlinear Schrödinger-type equation with an implicit nonlinearity. The initial jump is resolved via a dispersive shock wave which forms before the onset of modulational instability. A semi-analytical solution is developed for the one-dimensional line bore case which predicts the amplitude of the solitary waves which form in the dispersive shock wave. The solitary wave amplitude versus jump height diagrams can exhibit three different kinds of behaviors. A unique solution, an S-shaped solution curve and multiple solution branches where the upper branch has separated from the lower branches. A bifurcation from the low to the high power branch can occur for many parameter choices as the amplitude of the initial jump increases. The effect of temperature on the evolution of the bore, the amplitude of the solitary waves and the bifurcation patterns are all discussed and the semi-analytical solutions are found to be very accurate.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optical soliton perturbation in magneto-optic waveguides;Journal of Nonlinear Optical Physics & Materials;2018-03

2. Optical dispersive shock waves in defocusing colloidal media;Physica D: Nonlinear Phenomena;2017-03

3. Circular dispersive shock waves in colloidal media;Journal of Nonlinear Optical Physics & Materials;2016-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3