Highly dispersive optical solitons and solitary wave solutions for the (2 + 1)-dimensional Mel’nikov equation in modeling interaction of long waves with short wave packets in two dimensions

Author:

Das Nilkanta1,Saha Ray S.1

Affiliation:

1. Department of Mathematics, National Institute of Technology Rourkela, Odisha 769008, India

Abstract

In this paper, the optical soliton and solitary wave solutions of the [Formula: see text]-dimensional Mel’nikov equation are investigated using the Kudryashov [Formula: see text] function technique. The Kudryashov [Formula: see text] function approach has various features that significantly facilitate symbolic computing, particularly for highly dispersive nonlinear equations. In computations, this approach has the benefit of not requiring the use of a certain function form. This approach gives an algorithm that is straightforward, efficient, and simple for finding solitary wave solutions. In addition, this approach is very influential and reliable when it comes to discovering hyperbolic function solutions of nonlinear equations. Many new hyperbolic function solutions have been obtained from the governing equation by using this technique. In addition, numerous types of soliton solutions describing various structures of optical solitons are retrieved. Using this method, breather, W-shaped, bell shaped, and bright soliton solutions have been generated from the governing equation. From the obtained results, it can be asserted that the applied approach may be a useful tool for addressing more highly nonlinear problems in various fields. By choosing particular values for the relevant parameters, the dynamic features of some breather, W-shaped, bell shaped and bright soliton solutions to the [Formula: see text]-dimensional Mel’nikov equation have been displayed in 3D, 2D and contour graphs.

Funder

Council of Scientific and Industrial Research

Publisher

World Scientific Pub Co Pte Ltd

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3