NANOCRYSTALLINE ALUMINUM DOPED ZINC OXIDE COATED FIBER OPTIC FOR ULTRAVIOLET DETECTION

Author:

RASHID A. R. A.1,MENON P. S.1,SHAARI S.1

Affiliation:

1. Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

Abstract

In this paper, we report the fabrication and characterization of an ultraviolet sensing by using Al -doped ZnO films coated on quartz slide and silica fiber optic. Undoped ZnO , 0.5, 1, 2 and 3 at.% of Al were prepared by sol–gel method with annealing temperature of 400°C for 1 h. The presence of spherical shaped nanoparticles and hexagonal (wurtzite) structure were detected for Al doped ZnO by using FESEM and XRD. The band gap values increased by adding Al due to the increment of carrier concentration. I–V curves reveal an ohmic line and improvement in electrical conductivity when the samples are illuminated by ultraviolet (UV) light with a wavelength of 365 nm. At 1 at.% of Al , the film have a larger increment in photocurrent response when illuminated with UV light compared to undoped ZnO and higher concentration (2 at.% and 3 at.%) of Al . For coated fiber optic, the fiber operates under leaky mode and the refractive index of ZnO is decreasing under UV radiation. There is a small drop in output intensity and increased abruptly which depends on the changes of ZnO refractive index. The thin films have a longer recovery time than response time.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study of morphological, microstructural, and chlorpyrifos-sensing properties of aluminum-incorporated ZnO nanowires;Journal of Materials Science: Materials in Electronics;2021-02-12

2. Optical Properties of ZnO, TiO2 and ZnO:TiO2 Composite Films;Nano Hybrids and Composites;2021-02

3. A fiber ultraviolet sensor applied to partial discharge detection;Optics Frontiers Online 2020: Distributed Optical Fiber Sensing Technology and Applications;2021-01-08

4. Zinc Oxide Thin Film Synthesized by Sol-Gel Method;Solid State Phenomena;2020-07

5. Ultraviolet sensing characteristics of Ag-doped ZnO micro-nano fiber;Sensors and Actuators A: Physical;2020-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3