INFLUENCE OF PIEZOELECTRICITY AND MAGNETIC FIELD ON STIMULATED BRILLOUIN SCATTERING IN III–V SEMICONDUCTORS

Author:

SINGH M.1,AGHAMKAR P.1,KISHORE N.1,SEN PRANAY K.2

Affiliation:

1. Department of Applied Physics, Guru Jambheshwar University of Science and Technology, Hisar-125001, India

2. Department of Applied Physics, S. G. S. Institute of Science and Technology, Indore-452003, India

Abstract

Using electromagnetic treatment, a detailed analytical investigation of stimulated Brillouin scattering (SBS) has been made for a semiconducting crystal in the presence of an external magnetostatic field. The effect of piezoelectricity (β) and magnetic field [Formula: see text] has been introduced through equation of motion of lattice vibration and Lorentz force, respectively. The analysis is applied to both cases viz. non-piezoelectric (β = 0) and piezoelectric (β ≠ 0) in the absence (B0 =0) and the presence (B0 ≠ 0) of external magnetostatic field. The numerical estimates are made for n-type InSb crystals, taken as representative III–V semiconductor, duly shined upon by pulsed 10.6 μm CO 2 laser. The inclination of applied magnetostatic field with respect to the direction of propagation of pump beam is found to augment the gain coefficient for the onset of stimulated Brillouin scattering. Moreover, the SBS gain coefficient increases with increasing scattering angle and results in a maximum value for the backscattered mode. The backward Brillouin gain is found to be nearly 104 times larger than forward gain when β ≠ 0 and B0 = 10T. The analysis also suggests the possibility of observing optical phase conjugation reflectivity as high as 106 in the weakly piezoelectric doped semiconductors with moderate magnetostatic field. The numerical estimation suggests that piezoelectric doped III–V semiconductors in the presence of magnetic field are candidate materials for fabrication of cubic nonlinear devices.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3