Measuring the growth force of invasive plant cells using Flexure integrated Lab-on-a-Chip (FiLoC)

Author:

Ghanbari Mahmood1,Packirisamy Muthukumaran1ORCID,Geitmann Anja2

Affiliation:

1. Optical-Bio Microsystems Laboratory, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Québec H3G 1M8, Canada

2. Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada

Abstract

The pollen tube is a tip growing cell that is able to invade plant tissues in order to accomplish its function — the delivery of sperm cells to the ovule. The pistillar tissues through which the tube has to elongate represent a formidable mechanical obstacle, but it is unknown how much force the growing tube is able to exert, or how mechanical impedance affects its growth behavior. We quantified the invasive force of individual pollen tubes using a microfluidic lab-on-a-chip device featuring a microscopic cantilever. Using finite element method the maximum invasive growth force of the growing pollen tube was determined to be in the microNewton range. Real time monitoring revealed that contact with the mechanical obstacle caused a shift in the peak frequency characterizing the oscillatory behavior of the pollen tube growth rate. This suggests the presence of a feedback-based control mechanism with a mechanical regulatory component.

Funder

FRQNT

Concordia Research Chair

Publisher

World Scientific Pub Co Pte Lt

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3