A functional system for high-content screening of neuromuscular junctions in vitro

Author:

Smith A.S.T.1,Long C.J.1,Pirozzi K.1,Hickman J.J.1

Affiliation:

1. NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, USA

Abstract

High-content phenotypic screening systems are the logical extension of the current efficient, yet low information content, pre-clinical screens for drug discovery. A physiologically accurate in vitro neuromuscular junction (NMJ) screening system would therefore be of tremendous benefit to the study of peripheral neuropathies as well as for basic and applied neuromuscular research. To date, no fully-defined, selective assay system has been developed which would allow investigators to determine the functional output of cultured muscle fibers (myotubes) when stimulated via the NMJ in real time for both acute and chronic applications. Here we present the development of such a phenotypic screening model, along with evidence of NMJ formation and motoneuron initiated neuromuscular transmission in an automated system. Myotubes assembled on silicon cantilevers allowed for measurement of substrate deflection in response to contraction and provided the basis for monitoring the effect of controlled motoneuron stimulation on the contractile behavior. The effect was blocked by treatment with D-tubocurarine, confirming NMJ functionality in this highly multiplexed assay system.

Publisher

World Scientific Pub Co Pte Lt

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3