Affiliation:
1. Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
Abstract
In vitro tools, which can enable development of models that replicate the cell microenvironment associated with complex diseases such as osteoarthritis (OA), are critically needed. In OA, catabolic and inflammatory processes orchestrated by multiple cell types lead to the eventual destruction of articular cartilage. To address this need, our group developed a device that will enable investigation of complex cell systems. Our stackable tissue culture insert was fabricated and characterized with respect to biocompatibility, ease of use, and potential for tissue culture applications. The stackable tissue culture inserts can be easily modified, fabricated, and assembled into commercially available multi-well plates. In vitro studies conducted with three different cell types demonstrated high cell viability and functional secretion when cultured in the stackable inserts. Furthermore, synergistic effects when the three cell types were cultured together were observed. This demonstrates the need to more fully interrogate in vitro culture systems, and this stackable insert can provide a tool to fill the current technological void to do so.
Funder
National Institutes of Health
Publisher
World Scientific Pub Co Pte Lt