Switchgrass as a bioenergy feedstock: advances in breeding and genomics research

Author:

Bhandari H.S.1,Missaoui A.M.2,Bouton J.H.2,Saha M.C.3

Affiliation:

1. Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996-4561, USA

2. Crops and Soil Sciences Department, Miller Plant Sciences Building, University of Georgia, Athens, GA 30602, USA

3. Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA

Abstract

Switchgrass (Panicum virgatum L), a native perennial of the North American prairie, possesses high biomass yield potential in marginal environments with limited input. It is an outcrossing tetraploid (2n = 4x = 36) with disomic inheritance. Previous research on cultivar improvement was focused primarily on herbage yield and forage digestibility. The decision of the U.S. Department of Energy Biomass Feedstock Development Program (NFDP) to develop switchgrass as a lignocellulosic bioenergy feedstock in the USA in the 1990s prompted a growing motivation for breeding and genomics research. The species is in early stages of domestication and current cultivars include mostly early releases for forage use that were selected directly from collected strains. Recent releases specifically for biomass feedstock have undergone one or two cycles of selection. As an outcrossing self-incompatible species, switchgrass possesses ample genetic diversity both between and within native populations. Conventional population improvement approaches such as recurrent restricted phenotypic selection (RRPS) are effective in improving forage yield and digestibility. Hybrids between different populations also demonstrated heterosis for key feedstock traits. However, genetic gains per year from selection using conventional approaches are low due to perennial growth habit and low heritability of important traits. Genomic approaches could be helpful in improving selection gain. Significant efforts have been placed in developing genomics resources. Genetic linkage maps were published and a large number of DNA-based markers were developed. Whole-genome sequencing is near completion, and the genetic bases of inheritance of key feedstock traits are being investigated. New insights into the molecular mechanisms will enable tailoring more efficient cultivar breeding approaches in the future.

Publisher

World Scientific Pub Co Pte Lt

Reference164 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3