Combination of Optimal Three-Step Composite Time Integration Method with Multi-Point Iterative Methods for Geometric Nonlinear Structural Dynamics

Author:

Shahraki Mojtaba1ORCID,Shahabian Farzad1ORCID,Maghami Ali1ORCID

Affiliation:

1. Civil Engineering Department, Ferdowsi University of Mashhad, Azadi Square, Mashhad 9177948974, Razavi Khorasan Province, Iran

Abstract

This study focuses on solving the geometric nonlinear dynamic equations of structures using the multi-point iterative methods within the optimal three-step composite time integration method (OTCTIM). The OTCTIM, initially devised for linear dynamic systems, is now proposed to encompass nonlinear dynamic systems in such a way that the semi-static nonlinear equations in time sub-steps can be solved using multi-point methods. The Weerakoon–Fernando method (WFM), Homeier method (HM), Jarrat method (JM), and Darvishi–Barati method (DBM) have been extended as multi-point solvers for nonlinear equations in OTCTIM, which exhibit a higher convergence order than the Newton–Raphson method (NRM), without requiring the calculation of second and higher derivatives. Several structural examples were solved to examine the performance of these methods in the OTCTIM approach. The results demonstrated that the multi-point iterative methods outperform NRM (in terms of the number of iterations) within the OTCTIM for geometric nonlinear structural dynamics and, among the multi-point methods, the JM and DBM converged with fewer number of iterations and lower error levels. Furthermore, it has been observed that when solving nonlinear dynamic equations for structures with a high number of degrees of freedom, the incorporation of the DBM into the OTCTIM mitigates the convergence iterations and the average elapsed time for iterative sub-steps.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3