Dynamic Force Loading Strategy for Effective Force Testing Considering Natural Velocity Feedback Compensation and Nonlinearity

Author:

Wang Zhen1,Ding Yong2,Shi Aming2,Ning Xizhan3,Wu Bin1

Affiliation:

1. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, P. R. China

2. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, P. R. China

3. College of Civil Engineering, Huaqiao University, Xiamen 361021, P. R. China

Abstract

The effective force testing is a promising seismic testing method for evaluating the structural dynamic response to earthquakes for conciseness and efficiency. However, two challenging loading issues are associated with this method, i.e. the natural velocity feedback (NVF) and nonlinearities related to the interaction between the loading system and specimen, thereby hindering its development and extensive applications. To address these issues, this study proposes a dynamic force loading strategy using a hybrid algorithm with linear compensation for NVF and model reference adaptive control via the minimal control synthesis (MCS) method. Online identification of linear compensation gain in preliminary tests is conceived based on the gradient descent method. A series of numerical simulations on a nonlinear loading system model with linear/trilinear single/two degree(s)-of-freedom specimens are conducted using five loading strategies, including linear and nonlinear compensations and MCS method. Comparative studies show that the proposed method and nonlinear compensation strategy outperform the other three methods, and sometimes the proposed method performs best. In summary, the proposed method is promising because of its accuracy and robustness as well as its ease of implementation and cost-effectiveness.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

the Hebei Provincial Transport Bureau Research Programme

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3