Stability and Accuracy Analysis of Real-Time Hybrid Simulation (RTHS) with Incomplete Boundary Conditions and Actuator Delay

Author:

Tang Yu1,Qin Hui2

Affiliation:

1. School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, P. R. China

2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, P. R. China

Abstract

The main purpose of this paper is to examine the effects of incomplete boundary conditions and actuator delay on the dynamic responses of seismically excited civil structures. A set of constraint equations representing the reserved interface degrees-of-freedom (DOFs) and the delay are introduced to form a mechanical model of real-time hybrid simulation (RTHS) (referred to as RTHS-I&A) for a multi-degree-of-freedom (MDOF) system based on dynamic substructure method (DSM). Then, the RTHS-I&A system is modeled by a discrete closed-loop transfer function based on discrete control theory, using a selected integration algorithm, and the stability of the system is investigated by examining the poles of the function. Three typical cases with different structural properties are utilized to investigate the effects of incomplete boundary conditions and actuator delay. The results show that both incomplete boundary conditions and actuator delay greatly affect the dynamic responses of structures, and the combination of the two factors will amplify their influence especially on the nodes at the interface. The numerical model of RTHS-I&A proposed in this paper is quite useful for evaluating the responses of structures with different interface conditions and loading schemes that are preliminarily designed before a physical testing is conducted, and provides guidance for future relevant researches.

Funder

the National Natural Science Foundation of China

the Natural Science Foundation of Shaanxi Province

the Natural Science Foundation of Hebei Province

the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures at Shijiazhuang Tiedao University

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3