Numerical Study of Shape and Density Effect on Semi-Infinite Metallic Target Under Hypervelocity Impact

Author:

Kumar Kailash1,Iqbal M. A.1,Gupta P. K.1

Affiliation:

1. Civil Engineering Department, IIT Roorkee, India

Abstract

Numerical investigations are conducted to examine the penetration depth of ellipsoid-shaped projectiles into semi-infinite aluminum targets under conditions of hypervelocity impact. These results are then compared against empirical equations developed by various researchers for spherical projectiles. The semi-infinite aluminum target, sized at [Formula: see text][Formula: see text]mm, is composed of Al7075-T651. The projectiles are fashioned from Al-7075-T651, steel, and boron carbide. The projectile’s shape factor was determined using the L/d ratio, specifically for the symmetrical ellipsoidal shape. Employing Ansys Autodyn, a 3-dimensional finite element model (FEM) is created and calibrated using existing experimental findings from the literature. The validation utilized the Johnson–Cook (JC) and Johnson–Holmquist (JH-2) material models for both the targets and projectiles. These validated models are subsequently employed to analyze how the ellipsoid projectile’s shape and density influenced their interaction with the semi-infinite targets. Furthermore, the investigation also encompassed an analysis of the resulting crater shapes generated by the hypervelocity impact of both metallic and nonmetallic projectiles. It is observed that for a definite SF, max[Formula: see text] depth of penetration is observed due to steel project as compared to boron carbide and aluminum projectile. Both the diameter of the crater and the height of the bulge ([Formula: see text] are directly proportional to the impact velocity and density of projectiles, and inversely proportional to SF. However, for a particular material and impact velocity of the projectile, in the case of [Formula: see text], there are no clear-cut observations displayed it seems like a mixed variation.

Funder

Ministry of Human Resources and Development, Government of India, India

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3