A Generative Adversarial Network Model for Simulating Various Types of Human-Induced Loads

Author:

Xiong Jiecheng1,Chen Jun12

Affiliation:

1. College of Civil Engineering, Tongji University, Shanghai, P. R. China

2. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, P. R. China

Abstract

Severe vibrations may occur on slender structures like footbridges and cantilever stands due to human-induced loads such as walking, jumping or bouncing. Currently, to develop a load model for structural design, the main features, such as periodicity and stationarity of experimental load records, are artificially extracted and then mathematically modeled. Different physical features have been included in different load models, i.e. no unified load model exists for different individual activities. The recently emerged generative adversarial networks can be used to model high-dimensional random variables. The probability distribution of these variables learned from real samples can be used to generate new samples, avoiding extracting features artificially. In this paper, a new model is proposed which combines the conditional generative adversarial networks and Wasserstein generative adversarial networks with gradient penalty to generate individual walking, jumping and bouncing loads. The generator of the model has five fully connected layers and a one-dimensional convolutional layer, and the discriminator has five fully connected layers. After one million training steps using the experimental records, the generator can generate high-quality samples similar to real samples in waveform. Finally, by comparing the power spectral densities and single degree of freedom system’s responses of the generated samples with real samples, it is further proved that the proposed generative adversarial network model can be used to simulate various human-induced loads. Source code of the model along with its trained weights is provided to the readers to further analysis and application.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3