SUPERSONIC FLUTTER CONTROL OF AN ELECTRORHEOLOGICAL FLUID-BASED SMART CIRCULAR CYLINDRICAL SHELL

Author:

HASHEMINEJAD SEYYED M.1,MOTAALEGHI M. AGHAYI1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

In this paper, active flutter suppression of a simply supported circular sandwich cylindrical shell with a tunable electrorheological fluid (ERF) core, under axial supersonic gas flow, is studied. The structural analysis is based on the classical thin shell theory, the ERF core is modeled as a first-order Kelvin–Voigt material, and the Krumhaar's modified supersonic piston theory is utilized to model the aerodynamic loading. Hamilton's principle is used to formulate the dynamic equations of motion together with the relevant boundary conditions. The generalized Fourier expansions in the circumferential and axial directions in conjunction with the classical Galerkin method are employed to set up the governing equations in the state-space domain. The critical free stream static pressures at which unstable oscillations arise are calculated for selected applied electric field strengths and cylinder length ratios. The Runge–Kutta time integration algorithm is used to determine the open-loop aeroelastic response of the system in two basic loading configurations, namely, a concentrated impulse point load and a sonic boom line load. Subsequently, a sliding mode control (SMC) strategy is adopted to actively suppress the closed loop system dynamic response in supersonic flight condition. Simulation results demonstrate performance and effectiveness of the adopted ERF-based SMC scheme. Limiting cases are considered and good agreements with the data available in the literature are obtained.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3