A Dynamic Modeling Method for Soft Pneumatic Robotic Arms Considering Both Geometric Nonlinearity and Visco-Hyperelasticity

Author:

Wang Tao1ORCID,Wang Xi1ORCID,Fu Guoqiang1ORCID,Lu Caijiang1ORCID

Affiliation:

1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610000, P. R. China

Abstract

This work proposes a new dynamic modeling approach that integrates the principle of virtual power and a spring–damper–fluid equivalent method. It is able to simultaneously consider the geometric and material nonlinearity including hyperelasticity and viscoelasticity of the soft robotic arm. Meanwhile, the nonuniform deformation of the soft arm wall can be introduced into the model based on the equivalent model. A general prototype of soft robotic arms is fabricated and validation experiments of three pneumatic actuation modes are carried out. A maximum position error of 3.64[Formula: see text]mm at the end of the soft arm is obtained with an eight-segment theoretical model for the 280[Formula: see text]mm long and 30[Formula: see text]mm thick prototype in an approximate step actuation test with a maximum pneumatic pressure of 11.5[Formula: see text]kPa. The comparisons between the theoretical prediction and experimental results demonstrate a high accuracy of the proposed modeling method. Besides, simulations of dynamic motions under in-plane and out-of-plane actuation are carried out respectively, illustrating that the proposed method has the ability to describe a variety of actuation forms. The proposed dynamic modeling method provides a new way for modeling the soft robotic arms and has guiding significance for the design and control of soft robotic arms.

Funder

Technological Innovation Research and Development Project of Chengdu

Natural Science Foundation of Sichuan Province

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3