Affiliation:
1. Wind Engineering Key Laboratory of Sichuan Province, Southwest Jiaotong University, Chengdu 610031, P. R. China
Abstract
The purpose of this study is to investigate the nonlinear torsional flutter of a long-span suspension bridge with a double-deck truss girder. First, the characteristics of nonlinear flutter are studied using the section model in the wind tunnel test. Different aerodynamic measures, e.g. upper and lower stabilizers and horizontal flaps, are applied to improve the flutter performance of the double-deck truss girder. Then, the full bridge aeroelastic model is tested in the wind tunnel to further examine the flutter performance of the bridge with the optimal truss girder. Finally, three-dimensional (3D) flutter analysis is performed to study the static wind-induced effects on the nonlinear flutter of the long-span suspension bridge. The results show that single-degree-of-freedom torsional limit cycle oscillations occur at large amplitudes for the double-deck truss section at the attack angles of [Formula: see text] and [Formula: see text]. The upper and lower stabilizers installed on the upper and lower decks, respectively, and the flaps installed near the bottoms of the sidewalks can all effectively alleviate the torsional flutter responses. Meanwhile, it is found that the torsional flutter responses of the truss girder in the aeroelastic model test are much smaller than those in the section model test. The 3D flutter analysis demonstrates that the large discrepancies between the flutter responses of the two model experiments can be attributed to the additional attack angle caused by the static wind-induced displacements. This finding highlights the importance and necessity of considering the static wind-induced effects in the flutter design of long-span suspension bridges.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献