An Efficient Mixed Finite Element Perfectly Matched Layer with Optimal Parameters Selection for Two-Dimensional Time Domain Soil-Structure Interaction Analysis

Author:

Nguyen Dong Van1,Kim Jaemin1

Affiliation:

1. Department of Civil Engineering, Chonnam National University, Yongbong-ro 77, Buk-gu, Gwangju 61186, Republic of Korea

Abstract

Perfectly matched layer (PML) is known as one of the best methods to simulate infinite domains in many fields such as soil-structure interaction (SSI). The performance of PML is significantly affected by PML parameters selection. However, the way to select PML parameters still remains unclear. This study proposes a method for PML parameters determination for elastic wave propagation in two-dimensional (2D) media. The scaling and attenuation functions are developed in order to increase the accuracy and effectiveness of the PML. The proposed scheme is applied for a mixed PML in time domain. The finite element method (FEM) formulations of the PML are presented so that it can be easily applied to the existing codes. ABAQUS, a popular FEM code, is used for numerical applications in this study. The proposed PML is imported into ABAQUS by using a user-defined element (UEL) written in Fortran language. Six numerical analyses of SSI are implemented to prove the efficiency of the proposed PML. The numerical analyses cover many realistic problems, including free field, surface structure, and embedded structure problems. The results demonstrate the efficiency of the proposed PML in terms of the accuracy and computational cost.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3