Affiliation:
1. Department of Mechanics, Tianjin University, Tianjin, P. R. China
2. Key Laboratory of Dynamics and Control, Tianjin University, Tianjin, P. R. China
Abstract
Purpose. Impacts appear in a wide range of mechanical systems. To study the dynamical behavior introduced by impact in practical way, a single-degree-of-freedom impact oscillator rig is designed. Originality. A simple piece-wise linear system with symmetrical flexible constraints is designed and manufactured to carry out a wide range of experimental dynamic analysis and ultimately to validate piece-wise models. The new design choice is based on the following criteria: accuracy in representing the mathematical model, manufacturing simplicity, flexibility in terms of parameter changes and cost effectiveness as well avoidance of the delay introduced by the structure. Meanwhile, the new design provides the possibility of the applications of the complex control algorithms. Design/methodology/approach. The design process is described in detail. The initial experimental results of the rig as well as numerical simulation results are given. In this rig, the mass driven force is generated by electromagnet, which can be adjusted and control easily. Also, most of the physical parameters can be varied in a certain range to enhance flexibility of the system allowing to observe subtle phenomena. Findings. Compared with the simulation results, the designed rig is proved to be validated. Then, the initial experimental results demonstrate potentials of this rig to study fundamental impact phenomena, which have been observed in various engineering systems. They also indicate that this rig can be a good platform for investigating nonlinear control methods.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献