Nonlinear Vibration Movements of the Mid-Supported Micro-Beam

Author:

Akkoca Şevki1,Bağdatli Süleyman Murat1,Kara Toğun Necla2

Affiliation:

1. Department of Mechanical Engineering, Manisa Celal Bayar University, 45140 Yunusemre, Manisa, Turkey

2. Department of Mechanical Engineering, Gaziantep University, 27310 Şehitkamil, Gaziantep, Turkey

Abstract

This study analyzes the vibration movements of multi-support micro beams placed in an electrically smooth area using the modified couple stress theory. It has been assumed that the potential voltage that creates the electrical field strength varies harmonically. Large number of experiments in recent years have indicated that classical continuum theory is unable to predict the mechanical behavior of microstructure with small size. However, nonclassical continuum theory should be used to accurately design and analyze the microstructures. Modified couple stress theory models the micro and nanomechanical systems with higher accuracy because they employ additional material parameters to the equation considering size dependent behavior. The most general nonlinear motion equations for multi-support microbeams have been obtained by considering the material size parameter, the number of support and support positions, damping effect, axial stresses, electrical field strength, and nonlinear effects resulting from elongations. The nonlinear equations of motion are obtained according to the Hamilton method using the modified couple stress theory (MCST). The resulting equations of motion are nondimensionalized. In this way, the mathematical model has been made independent of the type and geometric structure of the material. Approximate solutions of the obtained dimensionless motion equation are obtained by the multi-scale method, which is one of the perturbation methods. As a result, an increase occurs in the first mode frequencies ([Formula: see text]) and nonlinear correction effect parameters ([Formula: see text]) with the progress of the center support position gradually towards [Formula: see text] and the increase of the microbeam elasticity coefficient ([Formula: see text]).

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3