A Geometrically Exact Beam Finite Element for Non-Prismatic Strip Beams: Linearized Lateral-Torsional Stability
-
Published:2023-02-08
Issue:
Volume:
Page:
-
ISSN:0219-4554
-
Container-title:International Journal of Structural Stability and Dynamics
-
language:en
-
Short-container-title:Int. J. Str. Stab. Dyn.
Affiliation:
1. CERIS and Departamento de Engenharia Civil, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
Abstract
This paper presents a new geometrically exact beam finite element able to perform, accurately and efficiently, linear stability analyses of curved and tapered elastic strip beams (beams with thin rectangular cross-section) susceptible to lateral-torsional bucking. This element constitutes a non-trivial extension, to the spatial (3D) case, of that previously reported by the author for the in-plane (2D) case in Gonçalves [R. Gonçalves, A geometrically exact beam finite element for non-prismatic strip beams: The 2D case, Int. J. Struct. Stab. Dyn. (2022) 2350037]. To allow capturing accurately torsion effects, a torsion-related warping function is derived and included as an additional cross-section degree-of-freedom (DOF). Since the element is developed using a geometrically exact framework, complex effects such as load height and out-of-plane flexural-torsional effects are straightforwardly included. For implementation purposes, all fundamental expressions are provided in simple vector/matrix forms. A set of numerical examples is presented and discussed, to show that the proposed element provides very accurate solutions with a small DOF number, even for heavily curved and tapered members.
Funder
Portuguese Foundation for Science and Technology
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering