The Effect of Hyperelasticity and Nonlinearity on the Dynamic Behaviors of Hyperelastic Functionally Graded Beams on Nonlinear Elastic Foundation

Author:

Chen Jun1ORCID,Qu Wenchao1ORCID,Ye Chao1ORCID,Zhao Zinan2ORCID,Wang Huiming1ORCID

Affiliation:

1. Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, P. R. China

2. Huanjiang Laboratory, Zhuji 311816, P. R. China

Abstract

Hyperelastic functionally graded materials have a wide range of application prospects in soft robotics and biomedical fields. This paper investigates the nonlinear free and forced vibrations of a hyperelastic functionally graded beam (HFGB) based on higher-order shear deformation beam theory. The geometrical nonlinearity is considered by using the von-Kármán’s nonlinear theory. The three-material-parameter free energy function named as Ishihara model is employed to characterize the hyperelastic material. The power-law gradient form along the thickness direction is adopted. The HFGB is resting on the elastic foundation. The Winkler, Pasternak and nonlinear stiffness coefficients are considered. The time-harmonic external force is applied to the HFGB. The nonlinear governing equations for the vibration of the HFGB are derived by using Hamilton’s principle, and are subsequently transformed into ordinary differential equations via Galerkin’s method. The nonlinear free vibration and primary resonance of the HFGB are investigated analytically by employing the extended Hamiltonian method and multiple scales method, respectively. The results indicate that the power-law index, slenderness ratio, material properties, and elastic foundation parameters have significant influences on the nonlinear frequency of free vibration as well as the frequency–response and force–response curves of forced vibration. The phase plane method is employed to analyze the system’s stability states under various excitation amplitudes. The relative error between the results of the current computational model and the published literature is less than 0.1 percent.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3