Thermo-Mechanical Buckling of CFRP Cylindrical Shells with FGPM Coating

Author:

Xu Kai1,Zhou Zhenhuan2,Lu Qingzhen1,Sun Jiabin1,Jia Ziguang1

Affiliation:

1. State Key Laboratory of Structure Analysis for Industrial Equipment and School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, P. R. China

2. State Key Laboratory of Structure Analysis for Industrial Equipment and Department of Engineering, Mechanics, Dalian University of Technology, Dalian 116024, P. R. China

Abstract

In this paper, the buckling behaviors of cylindrical shells made of a new kind of carbon fiber reinforced polymer (CFRP) and coated with functionally graded polymeric material (FGPM) are investigated. The fundamental equations of a moderately-thick shell are established within the framework of Reddy’s higher-order shear deformation theory (HSDT). The material model is derived by combining the conventional micro-mechanical CFRP model with the hybrid FGPM model. Micro-crack damage in CFRP core is included via the damage variables. The buckling compressive stresses of the shells exposed to the thermal environment are obtained by the Galerkin’s method. The solutions reveal that the lay-up sequence of the laminas and the thickness ratio of the FGPM coating to CFRP core have significant influence on the computed results. The variation of the buckling loads with respect to the content of carbon fiber and distributed profile of the FGPM components follows some nonlinear laws. The structural instability induced by damages appear to be more remarkable with the increased shell thickness. However, this effect can be reduced by optimizing the ply angles of the stacking laminas. More factors, such as geometric parameters, numbers of fiber layers, lamina stacking sequences, damage, material properties and thermal loads, are also discussed in detail.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3