Seismic Analysis of High-Speed Railway Bridge-CRTS III Slab Ballastless Track System Under Transverse Earthquake

Author:

Guo Wei12,Xu Zian12,Ye Yitao13

Affiliation:

1. School of Civil Engineering, Central South University, Shao-shan-nan Road, Changsha 410075, P. R. China

2. National Engineering Research, Center of High-speed Railway, Construction Technology, Central South University, Changsha, Hunan 410075, P. R. China

3. CCCC Highway Consultants Co., Ltd, Deshengmenwai Street, Changsha, Beijing 100088, P. R. China

Abstract

The new generation of China Railway Track System III (CRTS III) ballastless track structure has been found vulnerable under high-level earthquakes. However, the seismic characteristics and the damage mechanism had not been well studied. In this paper, a 4-span high-speed railway (HSR) simply supported bridge-track system model is established to investigate the seismic response and damage mechanism of the bridge-CRTS III slab ballastless track system under transverse earthquakes by nonlinear history analysis. In accordance with the results, the piers have a good seismic performance under high-level earthquake (0.57 g). The non-uniform vibration of unequal-height piers results millimeter-level inconsistent displacements between the girders. The fixed bearing is vulnerable under the earthquakes with PGA of 0.3 g and 0.57 g, indicating that the seismic design of fixed bearing should be optimized to enhance the seismic resistance under high-intensity earthquake. After the damage of fixed bearing, the friction is not enough to pull the girders to vibrate together with piers which leads the sliding of girders. The sliding of girder exacerbates the non-uniform displacements of girders and roadbed. The non-uniform vibration and residual slips of girders lead deformation of the rail, especially forming turning angles at the girder joints which may impact the safety of train operation.

Funder

National Natural Science Foundation of China

Fundamental Scientific Research Expenses of IME, China Earthquake Administration

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3