A LINEAR THERMOELASTIC BUCKLING BEHAVIOR OF FUNCTIONALLY GRADED HEMISPHERICAL SHELL WITH A CUT-OUT AT APEX IN THERMAL ENVIRONMENT

Author:

BHANGALE RAJESH K.1,GANESAN N.1

Affiliation:

1. Machine Design Section, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, India 600 036, India

Abstract

In this paper, a finite element formulation based on first-order shear deformation theory (FSDT) is used to study the thermal buckling behavior of functionally graded material (FGM) hemispherical shells with a cut-out at apex in a high temperature environment. A Fourier series expansion for the displacement variable in the circumferential direction is used to model the FGM hemispherical shell. The material properties of FGM hemispherical shells are functionally graded in the thickness direction according to a volume fraction power law distribution. Temperature-dependent material properties are considered to carry out a linear thermal buckling analysis. The hemispherical shell is assumed to be clamped–clamped and has a high temperature specified on the inner surface while the outer surface is at ambient temperature. The one-dimensional heat conduction equation is applied along the thickness of the shell to determine the temperature distribution and thereby material properties. Converged critical buckling temperatures are computed for two cases of thermal loads, namely, under uniform temperature rise and temperature gradient across the thickness. Numerical studies include the influence of, power law index, base to radius ratios, and different cut-out angles at the apex on the magnitude of thermal buckling temperature.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3