Affiliation:
1. School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
2. School of Mechanics & Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
Abstract
In this paper, a closed-form frequency equation of the pipe-in-pipe (PIP) structure with arbitrary boundaries is obtained. The frequency equation is derived from Green’s function of the transverse forced vibration of the PIP structure and takes into account the effects of internal two-phase flow and axial pressure. The reliability of the method in this paper is proved by comparison with the published literature. In the numerical discussion part, the PIP structures with clamped-clamped, clamped-free, and elastic boundary conditions are used as examples to discuss. The effects of equivalent stiffness coefficient, internal flow velocity, and gas volume fraction on the stability of PIP structure are studied. The results show that the stability of the PIP structure is better than that of the single-pipe structure, and the greater the equivalent stiffness coefficient of the elastic layer, the higher the critical flow velocity of the structure. In addition, a modal conversion phenomenon existing in the PIP structure is discovered. There are different forms of modal conversion for different boundary conditions, and the modal conversion makes the order of instability of the PIP structure different from that of a single-pipe. The conclusion of this paper has positive significance for the dynamic research of PIP structure.
Funder
National Natural Science Foundation of China
Chong Qing Municipal Solid Waste Resource Utilization & Treatment Collaborative Innovation Center
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献