Affiliation:
1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
2. School of Civil Engineering, Chongqing University, Chongqing 400044, P. R. China
Abstract
Membranes have been popularly used in the fields of civil engineering and aerospace engineering. When wrinkled, a membrane loses its stiffness in the direction perpendicular to wrinkles and is more sensitive to wind loads. This paper numerically studied the wind-induced responses of a wrinkled membrane and their variations with respect to wind speed, wind direction and wrinkling deformation. Based on the stability theory of plates and shells, the wrinkling deformation of a rectangular membrane under shear was obtained by post-buckling analysis. Then, by using the wind load derived from a wind tunnel test, the dynamic responses of the wrinkled membrane were numerically analyzed for different wind speeds, wind directions and wrinkling deformations. The results indicate the following: (1) the displacement and extreme stresses of a membrane are gradually intensified with an increase in the wind speed; (2) the wind direction plays an important role in the displacement, but it has little effect on the stresses and (3) the displacement increases with the wrinkling deformation, and the extreme stresses are intensified with an increase in the pre-tension. This study on the wind-induced responses of a wrinkled membrane is helpful to the understanding of the complex behavior of a wrinkled membrane under wind loads while reducing the adverse effects of wrinkling deformation and ensuring the dynamic stability of membrane structures.
Funder
National Natural Science Foundation of China and the 111 Project of the Ministry of Education
Bureau of Foreign Experts of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献