Affiliation:
1. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China
Abstract
Nanoporous materials and structures have attracted widespread attention due to their excellent mechanical properties. Based on the surface elasticity, the effective Young’s moduli are derived for four typical nanoporous structures with periodic unit cells. When the cross-sectional size reduces to nanoscale, the effective Young’s modulus is revealed to be strongly size-dependent. Both the effects of residual surface stress and effective-surface Young’s modulus are examined. The results indicate that negative effective Young’s modulus can be achieved when the residual surface stress is less than zero. The influences of the cross-sectional shape on the relationship between the overall deformation and applied loads are examined. The relative density also plays an important role to the mechanical characteristics not only at macroscales, but also at nanoscales.
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献