Enhanced Sensitivity for Structural Damage Detection Using Incomplete Modal Data

Author:

Esfandiari Akbar1,Vahedi Maryam2

Affiliation:

1. Department of Maritime Engineering, AmirKabir University of Technology, Tehran, Iran

2. Department of Civil Engineering, AmirKabir University of Technology, Tehran, Iran

Abstract

The necessity of detecting structural damages in an early stage has led to the development of various procedures for structural model updating. In this regard, sensitivity-based model updating methods utilizing mode shape data are known as effective tools. For this purpose, accurate estimation of the mode shape changes is desired to achieve successful model updating. In this paper, Wang’s method is improved by including measured natural frequencies of the damaged structure in derivation of the sensitivity equation. The sensitivity equation is then solved using an incomplete subset of mode shape data in evaluation of the changes of the structural parameters. A comparative study of the results obtained by the proposed method with those by the modal method for a truss and a frame model indicated that the former is significantly more effective for damage detection than the latter. Furthermore, the capability of the proposed method for model updating in the presence of measurement and mass modeling errors is investigated.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3