The Sub and Super-Tangential Nonconservative Load in Stability Problem of Nanobeams with Sprung Masses

Author:

Jarczewska K.1,Hołubowski R.1,Glabisz W.1

Affiliation:

1. Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

Abstract

In this study, the critical load and natural vibration frequency of Euler–Bernoulli single nanobeams based on Eringen’s nonlocal elasticity theory are investigated. Cantilever nanobeams with attached sprung masses were subjected to compressed concentrated and distributed follower forces. The parameter that determines the direction of nonconservative follower forces was given the positive and negative values, therefore, sub-tangential and super-tangential load were analyzed. The stability analysis is based on dynamical stability criterion and was carried out using a numerical algorithm for solving segmental nanobeams with many boundary conditions. The presented algorithm is based on the exact solutions of motion equations which are derived from equilibrium conditions for each separated segment of the nanobeam. Two comparison studies are conducted to ensure the validity and accuracy of the presented algorithm. The excellent agreement of critical load for Beck’s nano-column on Winkler foundation observed was confirmed as reported by other researchers. The effect of different values of the nonlocality parameter, tangency coefficient, spring stiffness coefficient, location of sprung mass and the greater number of attached sprung masses on a critical load of nanobeams compressed by nonconservative load are discussed. One of the presented results shows that significant differences between local and nonlocal theory appear when the beam subjected to follower forces loses its stability by flutter.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3