Exact Solutions of Fully Nonstationary Random Vibration for Rectangular Kirchhoff Plates Using Discrete Analytical Method

Author:

Yang Dixiong1,Chen Guohai1,Zhou Jilei2

Affiliation:

1. Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian City, Liaoning Province, Dalian 116024, P. R. China

2. School of Traffic and Vehicle Engineering, Shandong University of Technology, No. 266 Xincunxi Road, Zibo City, Shandong Province, Zibo 255049, P. R. China

Abstract

This paper proposes the discrete analytical method (DAM) to determine exactly and efficiently the fully nonstationary random responses of rectangular Kirchhoff plates under temporally and spectrally nonstationary acceleration excitation of earthquake ground motions. First, the fully nonstationary power spectral density (PSD) model is suggested by replacing the filtered frequency and damping of Gaussian filtered white-noise model with the time-variant ones. The exact solutions of free vibration of thin plates with two opposite edges simply supported boundary conditions are introduced. Then, the full analytical procedure for random vibration analysis of the plate is established by using a pseudo excitation method (PEM) that can consider all modal auto-correlation and cross-correlation terms. Owing to involving a series of Duhamel time integrals of single degree of freedom systems, it is difficult to fully analytically evaluate the PSD of time-variant responses such as the transverse deflection, velocity, acceleration and stress components. Thus, DAM that combines the PEM with precise integration technique is developed to enhance the computational efficiency. Finally, comparison of the results by the DAM with Monte Carlo simulations and the analytical stationary random vibration analysis demonstrates the high efficiency and accuracy of DAM. Moreover, the fully nonstationary excitation imposes a remarkable effect on the response PSD of rectangular Kirchhoff plates.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3