Transverse Vibration Energy Harvesting of Double Elastic Steel

Author:

Wang Yi-Ren1,Hung Chien-Chun1,Tseng Jung-Ting1

Affiliation:

1. Department of Aerospace Engineering, Tamkang University, 151 Ying-Chung Rd. Tamsui Dist., New Taipei City, Taiwan 25137, R. O. C.

Abstract

This study uses the piezoelectric technology to collect vibration energy from the fixed-fixed nonlinear elastic beams attached with the piezo-patch between the two ends. Both single elastic steel sheet (SESS) and double elastic steel sheet (DESS) systems are investigated and correlated. To simulate the power generation of the vibration energy harvester (VEH) of both the SESS and the DESS in different engineering elements, the simple harmonic external force generated by a shaker at the location of the piezo-patch is used as the source. With this, more vibration converted electric energy is derived from the transverse deformation and flapping from the DESS than the SESS beam. The equation of a nonlinear Euler–Bernoulli beam is coupled with the electric energy equation of the piezo-patch to simulate the SESS VEH system. The flapping force from the DESS VEH system can be considered the concentrated external load applied on the SESS beam model. The method of multiple scales (MOMS) is employed to analyze this nonlinear problem. The fixed points plots and the numerical results confirm this theory presented for the two beam systems, which can be used for evaluating similar engineering systems. Experiments are also performed in this study. The Taguchi method is used to analyze the optimum locations of the shaker and piezo-patch, as well as the confidence level of the factors. The method of nonlinear analysis presented in this study demonstrates its accuracy compared with the linear case. The transverse DESS VEH model proposed is proved to be feasible and more effective than the SESS system.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3