STABILITY OF SPATIAL ELASTICA IN A GRAVITATIONAL FIELD

Author:

PHUNGPAINGAM BOONCHAI1,VIRGIN LAWRENCE N.2,CHUCHEEPSAKUL SOMCHAI3

Affiliation:

1. Department of Civil Engineering, Rajamangala University of Technology, Thanyaburi, Pathum-Thani 12110, Thailand

2. Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708-0300, USA

3. Department of Civil Engineering, King Mongkut's University of Technology, Thonburi, Bangkok 10140, Thailand

Abstract

This paper considers the behavior of a spatial elastica in a gravitational field. The slenderness of the system considered is such that the weight becomes an important consideration in determining elastic equilibrium configurations. Both ends of the elastica are clamped in an initially (planar) horizontal orientation at a fixed distance apart. However, one of the ends allows an increase in arc-length, that is, it is a sleeve joint. Thus, the total arc-length is the primary control parameter. This kind of elastica typically loses stability, resulting in out-of-plane deflections, when the total arc-length is increased beyond a critical value. A small mid-length torque can used to perturb a planar equilibrium configuration in order to test for stability. The aim of this study is to assess the effect of self-weight of the elastica (which is typically ignored) on promoting or delaying the loss of stability. To this end, it is useful to compare and contrast the results of orientation, that is, the system is configured in both an initial "upright" orientation and then in an "upside-down" orientation to highlight the influence of gravity. The results of the weightless elastica are used as a reference. Analysis is based on Kirchhoff's rod theory and Euler parameters, and the resulting set of governing differential equations are solved using a shooting method. The results from an experimental system using a slender superelastic wire made from Nitinol (Nickel Titanium Naval Ordnance Laboratory) exhibit close agreement with the analytical results.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Snap-Through Phenomenon and Self-Contact of Spatial Elastica Subjected to Mid-Torque;International Journal of Applied Mechanics;2015-08

2. Deformation and vibration of a spatial clamped elastica with noncircular cross section;European Journal of Mechanics - A/Solids;2014-09

3. Deformation and vibration of a spatial elastica with fixed end slopes;International Journal of Solids and Structures;2013-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3