PARAMETRIC INSTABILITY OF TWO-DISK ROTOR WITH TWO INERTIA ASYMMETRIES

Author:

HAN Q. K.1,CHU F. L.1

Affiliation:

1. School of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084, China

Abstract

Determination of operating conditions of parametric instability is crucial to the design and usage of the inertia asymmetric rotor. Current research mostly focused on the rotor with single inertia asymmetric disk. There are few studies on the multi-disk rotors with multiple inertia asymmetries. In fact, the interaction between the multiple parametric excitations with various phasing and amplitude, which are induced by the multiple unsymmetrical disks, would make the instability behavior of the system differ distinctly from that of the single-disk rotor system. Thus, the parametric instability of the two-disk rotor system with two inertia asymmetries is studied herein. Two important indicators for describing the unstable regions, namely the unstable rotating speed and width of the unstable region, are defined and derived using the parametric instability theory and Taylor expansion technique. For a practical used two-disk unsymmetrical rotor, three design parameters (inertia excitation phasing, relative position of the disk, and inertia ratio) are discussed in detail for their effects on the two indicators. It is shown from the results that the dynamic instability of the two-disk unsymmetrical rotor system indeed has some unique features that differ from that of the one-disk rotor system. The interaction of the two inertia parametric excitations could be utilized to control (or enhance) the unstable regions.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3