Simultaneous State-Input-Stiffness Estimation for Nonlinear Duffing Oscillators Avoiding Jacobian Linearization

Author:

Shereena O. A.1,Krishnanunni C. G.1,Rao B. N.1

Affiliation:

1. Structural Engineering Division, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India

Abstract

This paper presents a simultaneous state-input-stiffness estimation framework for nonlinear systems. The technique combines an unbiased minimum variance estimator (MVE) from the data assimilation context with the Moore–Penrose pseudo-inverse. The investigation employs synthetically generated measurement data with additive Gaussian noise to replicate the field measurements. In the first stage of the algorithm, the MVE estimates a total force component, a function of the unknown system parameters and unknown input excitation. In the second stage, a system of over-determined equations is established by representing the input excitation with a Fourier series (with N coefficients) expansion. A least-squares solution for the unknown stiffness parameters and the Fourier coefficients is then achieved using the Moore–Penrose inverse. A dimensionless transformation handles the scale difference between the Fourier coefficients and unknown parameters. The novelty of the work is that the inputs and the parameters of the nonlinear systems are estimated simultaneously, circumventing any linearization of the system, and the associated computational hassles. The method by construction has a unique solution and an upper bound for stiffness estimation error is derived. The method is demonstrated numerically for Duffing oscillator systems excited by random inputs. The robustness of the technique is assessed by conducting various parametric studies. Numerical results reveal that the developed method accurately estimates the nonlinear cubic stiffness parameter, input force, and state responses.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3