QUASI-STATIC INFLATION SIMULATIONS BASED ON CO-ROTATIONAL TRIANGULAR SPACE MEMBRANE ELEMENTS

Author:

ERIKSSON ANDERS1,FAROUGHI SHIRKO2

Affiliation:

1. KTH Mechanics, Royal Institute of Technology, Osquars Backe 18, SE-10044 Stockholm, Sweden

2. School of Mechanical Engineering, Urmia University of Technology, Band Street, 57166-93187, Urmia, Iran

Abstract

Co-rotational triangular space membrane elements are developed for the quasi-static analysis of very thin structures subjected to pressure loadings from compressible media, aiming primarily at simulations of inflation processes. By separating rigid body motion and deformational displacement, the major part of geometric nonlinearity is treated by a co-rotational filter. With the formulation, hyper-elastic and linear elastic material models are used in the local plane element expressions. Numerical experiments show that either material model can be used in the present context, but that the linearly elastic model demands an optimal reference system. The hyper-elastic form is useful also for very large expansions, but the neo-Hookean expression chosen has some limitations for large strains. Simulations are parameterized by internal over-pressure, but an amount of injected gas can be calculated from pressure and enclosed volume. The uniqueness and stability in the response of the structures must be seen as a function of either pressure or amount of gas, dependent on the precise mechanism for inflation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation of ultra-thin membranes with creases;International Journal of Mechanics and Materials in Design;2022-10-31

2. The effect of different strain quantities on behavior of pin-jointed structural systems;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2022-07-21

3. Improved Finite Element Method for Inflated Beams with Local Wrinkles;AIAA Journal;2022-07

4. Numerical Studies on the Air–Membrane Interaction of ETFE Cushions;International Journal of Structural Stability and Dynamics;2021-03-03

5. Experimental study on the interaction between inner air and enveloping membrane of inflated membrane tubes;Engineering Structures;2020-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3