Medium-Frequency Vibration Analysis of Timoshenko Beam Structures

Author:

Zhang Yichi1,Yang Bingen1

Affiliation:

1. Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA

Abstract

Medium-frequency (mid-frequency) vibration analysis of complex structures plays an important role in automotive, aerospace, mechanical, and civil engineering. Flexible beam structures modeled by the classical Euler–Bernoulli beam theory have been widely used in various engineering problems. A kinematic hypothesis made in the Euler–Bernoulli beam theory is that the plane sections of a beam normal to its neutral axis remain planes after the beam experiences bending deformation, which neglects shear deformation. However, previous investigations found out that the shear deformation of a beam (even with a large slenderness ratio) becomes noticeable in high-frequency vibrations. The Timoshenko beam theory, which describes both bending deformation and shear deformation, would naturally be more suitable for medium-frequency vibration analysis. Nevertheless, vibrations of Timoshenko beam structures in a medium frequency region have not been well studied in the literature. This paper presents a new method for mid-frequency vibration analysis of two-dimensional Timoshenko beam structures. The proposed method, which is called the augmented Distributed Transfer Function Method (DTFM), models a Timoshenko beam structure by a spatial state-space formulation in the [Formula: see text]-domain. The augmented DTFM determines the frequency response of a beam structure in an exact and analytical form, in any frequency region covering low, middle, or high frequencies. Meanwhile, the proposed method provides the local information of a beam structure, such as displacement, shear deformation, bending moment and shear force at any location, which otherwise would be very difficult with energy-based methods. The medium-frequency analysis by the augmented DTFM is validated in numerical examples, where the efficiency and accuracy of the proposed method is demonstrated. Also, the effects of shear deformation on the dynamic behaviors of a beam structure at medium frequencies are examined through comparison of the Timoshenko beam and Euler–Bernoulli beam theories.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3