Elastic-Plastic Finite Element New Method for Lower Bound Shakedown Analysis

Author:

Zou Zongyuan1,Liu Doudou1,Song Chunyan2,Jin Miao1,Guo Baofeng1,Zhang Hongsheng3

Affiliation:

1. Key Laboratory of Advanced Forging & Stamping Technology and Science of Ministry of Education, Yanshan University, Qinhuangdao 066004, China

2. Engineering Training Center, Yanshan University, Qinhuangdao 066004, China

3. CFHI Tianjin Heavy Equipment Engineering Research Co. Ltd., Tianjin 300400, China

Abstract

Shakedown analysis methods have been well developed to determine the shakedown limit load of structures under various repeated loading situations. However, to take the limited kinematic hardening, geometric effect, and deformation into account, further research is required. A new numerical method is proposed for the lower bound shakedown analysis that applies the extended static shakedown theorem for limited kinematic hardening. The new method determines the shakedown limit load with two kinds of elastic-plastic finite element (FE) analyses: (1) the elastic-plastic loading and unloading analysis is carried out using the hardening model with the actual material parameters and (2) the elastic-perfectly plastic model with ultimate stress as the yield stress is used for the limit analysis. An incremental FE technique for finite strain plasticity is utilized to take the geometric effect into account. Furthermore, the deformation of the structure is monitored by checking the calculated deformation parameters. The method is applied to a square plate with a small central hole subjected to cyclic tensile load. The corresponding physical shakedown experiment of the above square plate was conducted for verification. The numerical result shows a good agreement with the experimental result. The new method provides a valid method for the structural lower bound shakedown analysis taking into account limited kinematic hardening, geometric effect, and deformation.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3