Stationary Random Vibration Analysis of Composite Laminated Shell Structures of Revolution in Thermal Environment

Author:

Zuo Peng12,Luo Jingrun2,Shi Xianjie2ORCID,Ge Renwei2

Affiliation:

1. Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, P. R. China

2. Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621999, P. R. China

Abstract

Currently, few studies are focused on the stationary random vibration for composite laminated shell structures of revolution (CLSSR), including composite laminated cylindrical shell (CLCY), composite laminated conical shells (CLCO), and composite laminated annular plates (CLAP). To fill this void corresponding to the above research in the literatures, a combination of the spectro-geometric method (SGM) and pseudo-excitation method (PEM) was developed to construct the theoretical model within the first-order shear deformation theory (FSDT). The different boundary restraints and coupling conditions were achieved by taking the appropriate stiffness values of artificial springs, and the thermal effect induced by thermal load was considered. Moreover, the Rayleigh–Ritz method was employed to deduce the governing differential equation. Further, the solution accuracy of the established model was assessed by comparing the obtained results with those from the literatures and the finite element method (FEM). Finally, the effect of specific parameters (i.e. fiber angle, temperature value and ply number) on the stationary random response of CLSSR was explored. According to the results, the proposed method proved effective for predicting the stationary random response characteristics of CLCY, CLCO, and CLAP in a thermal environment.

Funder

Major Research Plan

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3