Affiliation:
1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
Abstract
The dynamically induced ground vibration from high speed trains (HSTs) is investigated using a semi-analytical vehicle–track–ground coupling model. A multi-body vehicle is adopted along with rail irregularity considered in the model. The soil is simulated as a saturated poroelastic half-space with two elastic layers. The coupling system is solved in the transformed domain by applying the Fourier transform, and the dynamic stiffness matrix method is used to deal with the layered soil. The time-domain solutions are obtained by the inverse fast Fourier transform (FFT). The effects of the vehicle speed, observation location, rail irregularity, subgrade-bed stiffness, and vehicle type on the ground vibration are investigated thoroughly. The results show that all these factors can significantly affect the dynamically induced ground vibration.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献