Vibration Behavior and Serviceability of Arched Prestressed Concrete Truss Due to Human Activity

Author:

Li Jiang1,Liu Jiepeng2,Cao Liang2,Chen Y. Frank2

Affiliation:

1. Postdoctoral Research Station, School of Civil Engineering & Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, No. 174 Shazheng Street, Shapingba, Chongqing 400044, P. R. China

2. School of Civil Engineering & Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, No. 174 Shazheng Street, Shapingba, Chongqing 400044, P. R. China

Abstract

The current trend toward longer spans and lighter floor systems, combined with reduced damping and new activities, have resulted in an increasing complaints on floor vibration from building owners and occupants. Heel-drop, jumping, and walking impacts, which may lead to discomfort problems in daily life, were imposed on a large-span arched prestressed concrete truss (APT) girder system studied. The natural frequencies, peak acceleration, average root-mean-square acceleration (ARMS), maximum transient vibration value (MTVV), and perception factor for the girder were obtained and checked against the existing codes and standards. The purpose of this paper is to provide researchers and engineers with a detailed evaluation on the vibration behavior of the APT girder under different human activities, with a comprehensive review on the relevant criteria and some suggestions. Lastly, the following threshold peak accelerations are suggested: 650[Formula: see text]mm/s2 for transient heel-drop impact, 1450[Formula: see text]mm/s2 for transient jumping impact, and 250[Formula: see text]mm/s2 for steady-state walking. In addition, the threshold values of 90[Formula: see text]mm/s2 and 50[Formula: see text]mm/s2 are suggested for MTVV and ARMS, respectively, under steady-state walking.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3