Affiliation:
1. School of Civil Engineering, Shandong University, Jinan 250061, Shandong, P. R. China
Abstract
Wind-induced vibration suppression of transmission line structures is critical for structural reliability and serviceability. In this study, a shape memory alloy-spring pendulum (SMA-SP) is proposed for a wind-induced tower-line system to improve the reliability and serviceability of the control unit. A numerical calculation method of the transmission tower line structure coupled with the SMA-SP is established with special emphasis on the solid elements of the damper. Furthermore, the effectiveness and reliability of vibration suppression on wind-induced transmission line structures are evaluated and parametric analyses are conducted; the results reveal the influences of key parameters on the performance of SMA-SP and provide design recommendations for applications. In this study, it is demonstrated that the SMA-SP provides more stable control effects on the wind-induced vibration of transmission line structures than a conventional spring pendulum (SP), and the proposed numerical method effectively demonstrates the nonlinear mechanism of the damper. The parametric analyses show that SMA-SP exhibits low sensitivity levels to variations in the tuning frequency ratio and achieves optimal reduction effects after satisfying the internal resonance condition.
Funder
National Natural Science Foundation of China
Shandong Provincial Natural Science Foundation for Distinguished Young Scholars
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献