Crashworthiness Analysis for Structural Stability and Dynamics

Author:

Sharma Sunil Kumar12,Lee Jaesun3

Affiliation:

1. School of Engineering & Applied Science, National Rail and Transportation Institute (Deemed to be University), Vadodara 390004, Gujarat, India

2. Extreme Environment Design and Manufacturing Innovation Center, Changwon National University, Changwon 51140, Korea

3. School of Mechanical Engineering, Changwon National University, Changwon 51140, Korea

Abstract

In this paper, we fabricate human DNA and polar bear inspired thin-walled tube that tends to reduce the strength of decelerating force during impact, while escalating the amount of energy absorbed. The crashworthiness performance under axial impact is investigated using experimental analysis and non-linear finite element analysis (FEA). The investigation is conducted in three phases; the first phase consists of the design and fabrication of a novel bio-inspired tube (BIT) motivated by the most stable human DNA. Twelve BITs are created by filling cylindrical tubes into different positions of the BIT, which was inspired by the microstructural of polar bear hair. The second phase comprises the nonlinear FEA of energy-absorbed ability for different BITs under axial impact loading using LS-DYNA software, and then validated by the Simplified Super Folding Element (SSFE) theorem. In the third phase, Radial Basis Function (RBF) meta-models and Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used for the multi-objective optimization design of BIT-11. The numerical simulation results are compared with the experimental results to confirm the crash behavior and energy absorption (EA) characteristics of the optimal structure over a base one. Based on the results, the suited configuration with required performance in crashworthiness is suggested, which should be incorporated into automobiles for safety consideration of passengers during an impact. The results show an increment of 49% in Specific Energy Absorption (SEA), suggesting the better choice of a particular tube over the base tube.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3