Stability and Dynamic Analyses of Transmission Tower-Line Systems Subjected to Conductor Breaking

Author:

Li Jia-Xiang1,Li Hong-Nan12,Fu Xing1

Affiliation:

1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, P. R. China

2. School of Civil Engineering, Shenyang Jianzhu University, Shenyang, P. R. China

Abstract

Ice loads exerted on the transmission line can increase the probability of conductor breaking, which will lead to the stability failure of transmission towers. In this paper, a transmission tower-line system is established for two towers and three span lines. Then the nonlinear static stability analysis and nonlinear dynamic stability analysis induced by the conductor breaking are carried out to obtain the load versus displacement curves, while studying the failure modes of the transmission tower-line system. Moreover, the ice load and initial eccentricity are considered in the numerical simulation. In addition, a parametric analysis is performed to investigate the influence of span, insulator length and initial tension force on the stability failure of the system. The results show that the dynamic instability will occur earlier than the static instability due to the dynamic impact effect and conductor breaking with ice loads can lead to the progressive collapse of the transmission tower-line system. Finally, the span length has the greatest effect on the response of transmission tower caused by conductor breaking.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3