Numerical Methods for Time-Domain Responses of the Frequency-Independent Damped System

Author:

Sun Panxu1ORCID,Wang Shuxia2ORCID,Yan Yadan1ORCID,Wang Dongwei1ORCID

Affiliation:

1. School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China

2. School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, P. R. China

Abstract

The complex damping model can only be used to calculate the steady-state responses, while the transient responses are divergent. Based on the complex damping model, the Hilbert transform is introduced to establish a hysteretic damping model, eliminating the divergence phenomenon. However, with the increase of the loss factor, the damped natural frequency also increases. To overcome this shortcoming, a frequency-independent damping model is proposed based on the hysteretic damping model. However, traditional time-domain methods are no longer applicable to frequency-independent damping models. Therefore, the transient response and steady-state response are separated, and the assumption of external excitation acceleration is introduced. Time-domain methods-based linear polynomial assumption, quadratic polynomial assumption and trigonometric function assumption are proposed, respectively. Numerical examples show that the time-domain methods based on linear polynomial assumption and quadratic polynomial assumption have high computational efficiency. But these two methods cannot take into account the vibration frequency of external excitation acceleration. Hence, the computational accuracy is low. Compared with them, the time-domain method based on trigonometric function assumption has the lowest computational efficiency and the highest computational accuracy.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Henan Province

Key Research Projects of Henan Higher Education Institutions

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3