Damage-Based Inelastic Seismic Spectra

Author:

Greco Rita1,Marano Giuseppe Carlo23,Fiore Alessandra3

Affiliation:

1. DICATECH, Department of Civil Engineering, Environmental, Territory, Building and Chemical, Technical University of Bari, via Orabona 4 - 70125, Bari, Italy

2. College of Civil Engineering, Siberc, Fuzhou University, Fuzhou, Fujian Province, P. R. China

3. DICAR, Department of Civil Engineering and Architecture, Technical University of Bari, via Orabona 4 - 70125, Bari, Italy

Abstract

Current inelastic seismic spectra suffer from a conceptual limitation: they are significant only on the maximum demand of ductility and they do not include any influence of the number of response cycles, yield excursions, stiffness and strength degradation and damage potential to structures. This paper presents a stochastic approach for obtaining damage-based inelastic seismic spectra. In order to consider the cumulative damage phenomenon in structural systems under strong ground motions, the authors adopt the Park and Ang damage model that includes the displacement ductility and the hysteretic energy. The novelty is that the peak theory of random processes is adopted to achieve damage-based seismic spectra. This approach has some advantages compared with the standard statistical approaches based on a large number of recorded accelerograms. First, it drastically reduces the computational effort, while allowing us to typify the seismic motion by some parameters such as the frequency content, peak acceleration, energy content and strong motion duration, i.e. all the parameters that affect the structural response under seismic actions. Besides, it allows to obtain the following stochastic inelastic seismic response spectra: damage-based (i) displacement and acceleration inelastic spectra, (ii) response modification factor spectra, (iii) yield strength demand spectra, and (iv) damage-based inelastic displacement ratio spectra.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3