A Multi-Scale Wavelet Finite Element Model for Damage Detection of Beams Under a Moving Load

Author:

He Wen-Yu1,Zhu Songye2,Chen Zhi-Wei3

Affiliation:

1. School of Civil Engineering, Hefei University of Technology, Hefei Anhui Province, 230009, P. R. China

2. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

3. Department of Civil Engineering, Xiamen University, Xiamen, Fujian Province, 361005, P. R. China

Abstract

The resolution of structural finite element model (FEM) determines the computation cost and accuracy in dynamic analysis. This study proposes a novel wavelet finite element model (WFEM), which facilitates adaptive mesh refinement, for the dynamic analysis and damage detection of beam structures subjected to a moving load (ML). The multi-scale equations of motion for the beam under the ML are derived using the second-generation cubic Hermite multi-wavelets as the shape functions. Then an adaptive-scale analysis strategy is established, in which the scales of the wavelet beam elements are dynamically changed according to the ML position. The performance of the multi-scale WFEM is examined in both dynamic analysis and damage detection problems. It is demonstrated that the multi-scale WFEM with a similar number of degrees of freedom can achieve much higher accuracy than the traditional FEM. In particular, the multi-scale WFEM enables the detection of sub-element damage with a progressive model updating process. The advantage in computation efficiency and accuracy makes the proposed method a promising tool for multi-scale dynamic analysis or damage detection of structures.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3