Investigation on the Dynamic Performance of High-Speed Trains Under Tunnel and Crosswind Environments Considering Car-Body Flexibility Based on a CFD-MBD Co-Simulation Method

Author:

Hu Yanlin1ORCID,Chang Chao1ORCID,Chen Qinghua1ORCID,Ge Xin2ORCID,Ling Liang1ORCID,Wang Kaiyun1ORCID

Affiliation:

1. State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, P. R. China

2. CRRC Qingdao Sifang Co., Ltd., Qingdao 266000, P. R. China

Abstract

The dynamic performance of railway vehicles is significantly impacted by sudden-changed aerodynamic loads. To investigate the dynamic performance of high-speed trains (HSTs) under tunnel and crosswind environments considering the car-body flexibility, an intensive study is conducted. First, a train–track interaction dynamic model with a flexible car body is established in SIMPACK for dynamic response analysis. Concurrently, an aerodynamic model for calculating the distribution of aerodynamic loads is found in FLUENT to determine forces and moments applied to each part of the car body. Then, the two models are coupled utilizing a co-simulation method developed based on the User Data Protocol (UDP). Finally, a case study is carried out, involving a train passing through tunnels subjected to crosswinds. The results reveal that the distribution of aerodynamic loads on the car-body affected by crosswind is time-variant and non-even. Interestingly, the dynamic simulation results are almost unaffected by the method used to allocate the loads on the car body. Variations in the aerodynamic loads affected by crosswinds lead to flexible first-order diamond mode vibration of the car body at around 8.5[Formula: see text]Hz when exiting the tunnel. As the crosswind speed continues to increase, vibrations at frequencies of 18.2[Formula: see text]Hz and 24.2[Formula: see text]Hz will be enhanced, corresponding to the bending mode and combined mode of the car body. However, similar flexible vibrations are insignificant when the vehicle enters the tunnel. In addition, the vertical wheel–rail interaction obtained by the dynamic model with a rigid car body is slightly greater than that with a flexible car body.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3