Null Phase Assumption-Based Technique for Constructing the Target Model of Seismic Irregularity on High-Speed Railways

Author:

Yu Jian1ORCID,Zhou Wangbao12ORCID,Jiang Lizhong12ORCID,Liu Xiang3ORCID

Affiliation:

1. School of Civil Engineering, Central South University, Changsha 410075, P. R. China

2. National Engineering Laboratory for High-Speed Railway Construction, Changsha 410075, P. R. China

3. School of Civil Engineering, Fujian University of Technology, Fuzhou 350118, P. R. China

Abstract

High-speed railways are “lifeline projects” that shoulder the heavy responsibility of transporting relief supplies and medical forces for the first time after earthquakes. To ensure the train’s safety after earthquakes, it is of great urgency to ascertain a post-earthquake speed threshold. To that end, a target model for seismic irregularity emerges as a key parameter. In this paper, a null phase assumption-based technique for the mutual conversion between evolutionary power spectral density and non-stationary signal was proposed. Taking a high-speed railway track-bridge system as the research object, the target model of seismic irregularities was constructed based on the proposed technique. The rationality of the target model of seismic irregularities was verified, and the construction parameter settings were discussed. Moreover, a simplified frequency-domain fitting method for the target model of seismic irregularities was proposed based on the spectral decomposition theory. According to the research findings, the null phase assumption-based technique is capable of performing interconversion between seismic irregularity and its evolutionary power spectral density with satisfactory accuracy. It is recommended to set the minimum number of seismic irregularities, spatial sampling interval, hop size, and length of window function as 50, 0.25[Formula: see text]m, 1, and 40 to 100, respectively.

Funder

National Natural Science Foundation of China

the Hunan Innovative Provincial Construction Project

Innovation driven project of Central South University

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3